sekilas tentang matematika deskrit

Sebenarnya apa itu matematika deskrit?pentingkah belajar matematika deskrit?untuk apa belajar matematika deskrit?? disini akan kita bahas tuntas apa itu matimatika deskrit.


Pengertian matematika Deskrit
Objek yang dibahas dalam Matematika Diskrit - seperti bilangan bulat, graf, atau kalimat logika - tidak berubah secara kontinyu, namun memiliki nilai yang tertentu dan terpisah. Beberapa hal yang dibahas dalam matematika ini adalah teori himpunan, teori kombinatorial, permutasi, relasi, fungsi, rekursif, teori graf, dan lain-lain. Matematika diskrit merupakan mata kuliah utama dan dasar untuk bidang ilmu komputer atau informatika.
Notasi HimpunanHimpunan adalah koleksi objek yang terdefinisi dengan jelas; artinya, kita selaludapat menentukan apakah sebuah objek termasuk dalam koleksi atau tidak. Nama himpunan ditulis dengan menggunakan huruf besar A,B,H, S, Usedangkan anggota himpunan ditulis dengan huruf kecila, b, h, s, uContoh 2.1. Beberapa contoh himpunan.1. A adalah himpunan bilangan asli yang kurang dari 100.2. B adalah himpunan huruf vokal dalam abjad bahasa Indonesia.3. C adalah himpunan kuadrat bilangan asli.4. K adalah himpunan mahasiswa yang memiliki IPK lebih dari 3.5. M adalah himpunan mahasiswa Tadris Matematika IAIN Syekh Nurjati.2. Keanggotaan HimpunanUntuk menyatakan bahwa sebuah objek adalah anggota sebuah himpunankita menggunakan notasi a ASedangkan notasi a A berarti a bukan anggota himpunan A.Contoh 2.2. Jika A dan B adalah himpunan-himpunan pada Contoh 2.1, maka :a A, 101 A, i AHimpunan dari semua objek pembicaraan disebuthimpunan semesta dan biasanyadilambangkan dengan U. Sedangkan himpunan yang tidak mempunyai anggotadisebuthimpunan kosong dengan notasi {} atau0 



Matematika diskrit atau diskret adalah cabang matematika yang membahas segala sesuatu yang bersifat diskrit. Diskrit disini artinya tidak saling berhubungan (lawan dari kontinyu).


materi matematika deskrit
RELASI DAN FUNGSI

   Dalam kehidupan nyata, senantiasa ada hubungan (relasi) antara dua hal atau unsur-unsur dalam suatu kelompok. Misalkan, hubungan antara suatu urusan dengan nomor telepon, antara pegai dengan gajinya, dan lain-lain. Pada bab ini, akan dibahas tentang hubungan antara dua himpunan tak kosong dengan suatu aturan pengkaitan tertentu. Pembahasan tersebut meliputi definisi relasi dan fungsi, operasi beserta sifat-sifatnya.

Definisi Relasi dan Cara Penyajian
   Pada bab sebelumnya, telah dibahas tentang Cartesian product, yaitu berupa pasangan terurut yang menyatakan hubungan dari dua himpunan. Semua pasangan terurut yang mungkin merupakan anggota dari himpunan hasil Cartesian product dua buah himpunan. Sebagian dari anggota himpunan tersebut mempunyai hubungan yang khusus (tertentu) antara dua unsur pada pasangan urut tersebut, dengan aturan tertentu. Aturan yang menghubungkan antara dua himpunan dinamakan relasi biner. Relasi antara himpunan A dan himpunan B merupakan himpunan yang berisi pasangan terurut yang mengikuti aturan tertentu. Dengan demikian relasi biner R antara himpunan A dan B merupakan himpunan bagian dari cartesian product A × B atau R ⊆ (A × B).
Notasi dari suatu relasi biner adalah a R b atau (a, b) ∈ R. Ini berarti bahwa a dihubungankan dengan b oleh R. Untuk menyataan bahwa suatu unsur dalam cartesian product bukan merupakan unsur relasi adalah a R b atau (a, b) ∉ R, yang artinya a tidak dihubungkan oleh b oleh relasi R. Himpunan A disebut daerah asal (domain) dari R, dan
himpunan B disebut daerah hasil (range) dari R.

KOMBINATORIK

Persoalan kombinatorik bukan merupakan persoalan yang baru dalam kehidupan nyata. Banyak persoalan kombinatorik yang sederhana telah diselesaiakan dalam masyarakat. Misalkan, saat pemilihan pemain untuk tim sepak bola yang terdiri dari 11 pemain. Apabila ada 20 orang ingin membentuk suatu tim sepak bola, ada berapa kemungkinan komposisi pemain yang dapat terbentuk? Contoh lain adalah dalam menentukan sebuah password panjangnya 6 sampai 8 karakter. Karakter boleh berupa huruf atau angka. Berapa banyak kemungkinan password yang dapat dibuat ? Tetapi selain itu para ilmuwan pada berbagai bidang juga kerap menemukan sejumlah persoalan yang harus diselesaikan. Pada Bab ini, kita akan membahas tentang kombinatorik, permutasi dan apa yang terkait dengan itu. Kombinatorik merupakan cabang matematika untuk menghitung jumlah penyusunan objek-objek tanpa harus mengenumerasi semua kemungkinan susunannya.

Prinsip Dasar Menghitung
Dua prinsip dasar yang digunakan dalam menghitung (counting) yaitu aturan
pejumlahan dan aturan perkalian.

Prinsip Penjumlahan
Jika suatu himpunan A terbagi kedalam himpunan bagian A1, A2, …, An, maka jumlah unsur pada himpunan A akan sama dengan jumlah semua unsur yang ada pada setiap himpunan bagian A1, A2, …, An.
Secara tidak langsung, pada prinsip penjumlahan, setiap himpunan bagian A1, A2, …, An tidak saling tumpang tindih (saling lepas). Untuk himpunan yang saling tumpang tindih tidak berlaku lagi prinsip penjumlahan.

Prinsip Perkalian
Misalkan sebuah prosedur dapat dipecah dalam dua penugasan. Penugasan pertama dapat dilakukan dalam n1 cara, dan tugas kedua dapat dilakukan dalam n2 cara setelah tugas pertama dilakukan. Dengan demikian, dalam mengerjakan prosedur tersebut ada (n1 x n2) cara.
Secara tidak langsung, pada prinsip perkalian, bisa terjadi saling tumpang tindih (tidak saling lepas).

Definisi Graf
Graf merupakan struktur diskrit yang terdiri himpunan sejumlah berhingga obyek yang disebut simpul (vertices, vertex) dan himpunan sisi (edges) yang menghubungkan simpul-simpul terseut. terdiri dari dari Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. tidak berarah dan graf berarah. Graf tidak berarah, seperti telah dijelaskan pada contoh graf untuk jembatan Königsberg. Sementara itu, graf berarah (directed graph, digraph) merupakan graf yang mempunyai sisi yang berarah, artinya satu buah simpul yang dihubungkan oleh sisi tersebut merupakan simpul awal (initial vertex) dan simpul yang lain dikatakan sebagai simpul akhir (terminal vertex).

0 komentar :

Post a Comment

Silahkan Berkomentar Sesuai Dengan Topik, Jangan Menggunakan Kata-Kata Kasar, Komentar Dengan Link Aktif Tidak Akan Dipublikasikan

ttd

Admin Blog