Himpunan bagian (subset)

Himpunan bagian (subset)
Himpunan A dikatakan himpunan bagian dari himpunan B jika dan hanya jika setiap elemen A merupakan elemen B. Dalam hal ini, B dikatakan superset dari A.
Notasi: A ⊆ B
Contoh: A ⊆ B jika elemen A ada di B                                                                                                                                                                                           A={1,2,3}                                                                                                                                                                                                                                         B={1,2,3,4,5,7}                                                                                                                                                                                                                                                              C={1,2,4,5}     
Jadi : * A ⊆ B                                                                                                                                                                                                                                                                     * A bukan himpunan bagian C
1.6  Himpunan yang Sama
– Himpunan A dikatakan sama dengan himpunan B jika dan hanya jika setiap elemen A merupakan elemen B dan sebaliknya setiap elemen B merupakan elemen A.
– A = B jika A adalah himpunan bagian dari B dan B adalah himpunan bagian dariA. Jika tidak demikian, maka A ≠ B.
– Notasi : A = B  ↔   B dan B  A   
– Contoh: A={a,b,c}, B={c,a,b}      Jadi, A=B
– tiga prinsip yang perlu diingat dalam memeriksa kesamaan dua buah himpunan:
1. urutan elemen dalam himpunan tidak penting.         
     jadi {1,2,3} = {3,2,1} = {1,3,2}
2. pengulangan elemen tidak mempengaruhi kesamaan dua buah himpunan.            
      Jadi, {1,1,1,1}={1,1}={1}          {1,2,3}={1,2,1,3,2,1}
3. untuk tiga buah himpunan, ABC berlaku aksioma berikut:
– A = AB = B, dan C=C
– Jika A = B,maka B
– Jika A = B, dan B = C maka A = C
1.7  Himpunan Ekivalen
– Himpunan A dikatakan ekivalen dengan himpunan B jika dan hanya jika kardinal dari kedua himpunan tersebut sama.
– Notasi: A ~ B  ↔ |A|=|B|
Contoh: A={a,b,c} dan B={2,4,6} maka A ~ B sebab |A||B|
1.8  Himpunan Saling Lepas
– Dua himpunan A dan B dikatakan saling lepas (disjoint) jika keduanya tidak memiliki elemen yang sama.
– Notasi : A // B  
– Contoh: jika A={2,4,6,8} dan B={3,5,7} maka A // B sebab elemen himpunan A dan elemen himpunan B tidak ada yang sama.
1.9  Himpunan Kuasa
  • Himpunan kuasa (power set) dari himpunan A adalah suatu himpunan yang elemennya merupakan semua himpunan bagian dari A, termasuk himpunan kosong dan himpunan A sendiri.
  • Notasi : P(A) atau 2A
  • Jika |A| = m, maka |P(A)| = 2m.
Contoh:
– Jika A = { 1, 2 }, maka P(A) = { , { 1 }, { 2 }, { 1, 2 }}
– Himpunan kuasa dari himpunan kosong adalah P(Ø) = {Ø}, & himpunan kuasa dari himpunan {Ø} adalah P({Ø}) = {Ø, {Ø}}.
1.10  Operasi Pada Himpunan
1. Irisan ( ∩ )
Irisan (intersection) dari himpunan A dan B adalah himpunan yg setiap elemennya merupakan elemen dari himpunan A dan himpunan B.
Notasi: A ∩ B={x | x ∈ A dan x ∈ B}
Misalkan A={1,2,3,4,5} dan B={2,3,5,7,11} maka A ∩ B={2,3,5}
2. Gabungan  ( ∪ )
Gabungan(union) dari himpunan A dan B adalah  himpunan yang setiap anggotanya merupakan anggota himpunan A atau himpunan B.
Notasi : A ∪ B = { x | x ∈ A atau x ∈ B }
Misalkan A={1,2,3,4,5} dan B={2,3,5,7,11} maka, A ∪ B={1,2,3,4,5,7,11}
3. Komplemen
Komplemen dari suatu himpunan A terhadap suatu himpunan semesta U adalah suatu himpunan yang elemennya
merupakan elemen U yang bukan elemen A.
Notasi : Ā = { x | x ∈ U, tapi x ∉ A }
Misalkan U={0,… 11} dan A={1,3,5,7} maka, Ā = {0,2,4,6,8,9,10,11}
4. Selisih
Selisih dari dua himpunan A dan B adalah suatu himpunan yang elemennya merupakan elemen A dan bukan elemen B. Selisih antara A dan B dapat juga dikatakan sebagai komplemen himpunan B relatif terhadap himpunan A.
Notasi : A – B = { x | x ∈ A dan x ∉ B } = A  B’
Misalkan A={1,2,3,4,5} dan B={2,3,5,7,11} maka A – B = {1,4}
5. Beda Setangkup

Beda setangkup dari himpunan dan B adalah sesuatu himpunan yang elemennya ada pada himpunan A atau B, tetapi tidak pada keduanya.
Notasi: A= (AB) – (AB) = (A-B) ∪ (B-A)
Misalkan A = { 2, 4, 6 } dan B = { 2, 3, 5 } maka ,  AB = { 3, 4, 5, 6 }
6. Perkalian Kartesain
Perkalian kartesian (Cartesian products) dari himpunan A dan B adalah himpunan yang elemennya semua pasangan
berurutan (ordered pairs) yang mungkin terbentuk dengan komponen kedua dari himpunan A dan B.
Notasi: A x B ={(a,b)| a ∈ A dan b ∈ B}
Misalkan C = { 1, 2, 3 },  dan D = { ab }, maka  C × D = { (1, a), (1, b), (2, a), (2, b), (3, a), (3, b) }
         Catatan:
1. jika A dan B merupakan himpunan berhingga, maka: |A x B| = |A| . |B|
2. Pasangan berurutan (a,b) berbeda dengan (b,a).
3. Perkalian kartesian tidak komutatif, yaitu A x B ≠ B x A dengan syarat A dan B tidak kosong.
4. Jika A = ∅ atau B = ∅ maka A x B = B x A = ∅
1.11   Sifat-sifat Operasi Himpunan
 1. Hukum identitas:
– A ∪ ∅ = A
– A ∩ U  = A
 2.Hukum null:
– A ∩ ∅ = ∅
– A ∪ U = U
 3. Hukum Komplemen:
– A ∪ Ā = U
– A ∩   Ā = ∅
 4. hukum idempotent:
– A ∪ A = A
– A  ∩ A = A
 5. Hukum Involusi:
–  (–A)= A
 6. Hukum Penyerapan:
– A ∪ (A ∩ B) = A
– A ∩ (A ∪ B) = A
 7. Hukum Komutatif:
– A ∪ B = B ∪ A
– A ∩ B = B ∩ A
 8. Hukum Asosiatif:
– A ∪ (B ∪ C)=(A ∪ B) ∪ C
– A ∩ (B ∩ C)=(A ∩ B) ∩ C
– A ⊕ (B ⊕ C)=(A ⊕ B) ⊕ C
 9. Hukum distributif :
– A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)
– A  (B  C) = (A  B)  (AC)
 10. Hukum DeMorgan :
 A∩B = A∪ B
– A∪B = A∩ B

 
1.12  Prinsip Inklusi-Eksklusi
  • Berapa banyak anggota didalam gabungan dua buah himpunan A dan B? Penggabungan dua buah menghasilkan dua buah himpunan baru yang elemen-elemenya berasal dari himpunan A dan himpunan B.
  • Himpunan A dan himpunan B mungkin saja memiliki elemen-elemen yang sama. Banyaknya elemen bersama antara A dan B adalah ⏐A  B⏐. Setiap unsur yang sama itu telah dihitung dua  kali, sekali pada ⏐A⏐ dan sekali pada ⏐B⏐, meskipun ia seharusnya dianggap sebagai satu buah elemen didalam ⏐A B⏐, karena itu, jumlah elemen hasil penghubungan seharusnya adalah jumlah elemen dimasing-masing himpunan dikurangi dengan jumlah elemen didalam irisannya, atau ⏐ B = A +B–  B⏐.
Prinsip ini dikenal dengan nama prinsip inklusi-eksklusi. Dengan cara yang sama, kita dapat menghitung jumlah elemen hasil operasi beda setangkup:  ⏐ B = A + B⏐– 2 B
1.13  Partisi
Partisi dari sebuah himpunan A adalah sekumpulan himpunan bagian tidak kosong A1,A…..dari A sedemikian
sehingga :
(a)    A A …. = A, dan
(b)   Himpunan bagian Asaling lepas;yaitu A∩ A= Ø untuk i ≠ j.
Misalkan A = {1, 2, 3, 4, 5, 6, 7, 8}, maka { {1}, {2, 3, 4}, {7, 8}, {5, 6} } adalah partisi A.

Hit-Id.com - PTC Indonesia
1.14  Multiset
  • Dari definisi himpunan, himpunan adalah kumpulan elemen yang berbeda. Namun pada beberapa situasi, adakalanya elemen himpunan tidak seluruhnya berbeda, misalnya himpunan nama-nama mahasiswa di sebuah kelas. Nama-nama mahasiswa di dalam sebuah kelas mungkin ada yang sama, karena itu ada perulangan elemen yang sama di dalam himpunan tersebut. Himpunan yang elemennya boleh berulang (tidak harus berbeda) disebut himpunan-ganda  atau multisetContoh: {1, 1, 1, 2, 2, 3}, {2, 2, 2}, {2, 3, 4}, {} adalah himpunan ganda.
  • Multiplisitas dari suatu elemen pada multiset adalah jumlah kemunculan elemen tersebut pada multisetMisalkan : Jika M = { 0, 1, 01, 1, 0, 001, 0001, 00001, 0, 0, 1}, maka multiplisitas elemen 0 adalah 4. Himpunan merupakan contoh khusus dari suatu multiset, yang dalam hal ini multiplisitas dari setiap elemennya adalah 0 atau 1. Kardinalitas dari suatu multiset didefinisikan sbg kardinalitas himpunan padanannya, dgn mengasumsikan elemen2 di dalam multiset semua berbeda.
  • Operasi Antar Dua Buah Multiset
Misalkan P dan Q adalah multiset:
1. P Q adalah suatu multiset yang multiplisitas elemennya sama dengan multiplisitas maksimum elemen tersebut pada himpunan P dan Q.
Contoh:
             P = { aaacdd } dan Q ={ aabcc },
             P Q = { aaab,  ccdd
2.  P ∩ Q adalah suatu multiset yang multiplisitas elemennya sama dengan multiplisitas minimum elemen tsb pada himpunan P dan Q.
Misal:  Jika P = { a, a, a, c, d, d } dan Q = { a, a, b, c, c } maka P ∩ Q = { a, a, c }
1.15  Pembuktian Kalimat Himpunan
Kalimat himpunan adalah pernyataan yang menggunakan notasi himpunan. Kalimat dapat berupa kesamaan himpunan, misalnya “A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)” adalah sebuah kesamaan himpunan, atau berupa kalimat implikasi seperti “jika  B = Ø  dan   (B  C) maka selalu berlaku bahwa A  C”.
sumber referensi:
–          informatika.stei.itb.ac.id/~rinaldi.munir/
–          matematikadiskri.blogspot.com/2012/11/teori-himpunan.html

0 komentar :

Post a Comment

Silahkan Berkomentar Sesuai Dengan Topik, Jangan Menggunakan Kata-Kata Kasar, Komentar Dengan Link Aktif Tidak Akan Dipublikasikan

ttd

Admin Blog